ie by more than th**e fast cl**i ured for the gate widths o . The slope of the result rrent. The value for all ch for the ADC module to p em is easily expandal ch as the LeCroy 4290 e Distribution System roy Representative. DC hybrids for the 24 ng. TOP: test selec h of deviation from channel. ## **SPECIFICATIONS CAMAC Model 2282B 48 CHANNEL ADC** Input Sensing: Full Scale: Gain: Input Impedance: Input Protection: Input Limitations: Common Mode Properties: Integral Linearity: Differential Linearity: Residual Pedestal: Pedestal-Gate Width Coefficient: Temperature Coefficient: Long-Term Stability: Operating Temperature: ADC Resolution: Conversion Time: ADC Isolation: Gate Input: Gate Width: Gate Timing: Fast Clear: Digital Clear: Test Feature: Analog Outputs: Readout and Control: Packaging: Power Requirement: Analog Input Connector: Analog Input Cable: Charge (current integrating). $-1000 pC \pm 10\%$. -4 counts/pC ± 10% 50 Ω ±5%; 0 to -50 mA DC. \pm 50 V for 1 μ sec transients. to typically \pm (1% of reading + 0.25 pC). Common Mode Rejection Ratio >50 dB for ±200 mV (DC to 1 kHz). Typically \pm (0.1% of reading of + 0.25 pC); worst case \pm (0.25% of reading + 0.5 pC) for signals of slew rate ≤2 mA/nsec. For signals of slew rate 4 mA/nsec linearity is degraded Maximum voltage for linear response, - 1.5 V. For 3 V maximum input linearity is degraded to typically \pm (1% of reading \pm 0.25 pC). Typically less than 5%. Typically 125 counts (subtracted from data by processor) for a gate width of 100 nsec and high source impedance; 250 counts for 500 nsec gate width. < ±50 fC/nsec for gate widths >200 nsec plus 25 fC/nsec if wide gate jumper option is Typically (- 0.05% of reading \pm 0.2 counts)/°C for a gate width of \sim 1200 nsec. Coefficient may vary slightly for other gate widths. \pm (0.25% of reading + 0.5 pC)/week at constant temperature and voltage 0° to 40°C. 12 bits. 1 msec nominal +35 µsec per ADC module. >60 dB, including the effects of one input connector. One per module, rear panel input driven from nonregenerative driver (via ASB) in 2280 System Processor module. 50 nsec to 5 μsec (10 μsec if wide gate jumper option is implemented). In operation with wide gates, ADC conversion gain depends on pulse position in ADC gate time. This dependence is typically 0.6%/µsec. The gate input to the 2280 System Processor must precede the analog inputs by ≥50 nsec. May be executed any time within 10 μsec of a gate. Settles to within 1 count in <2 μsec . A digital clear is automatically generated by a fast clear ≥10 µsec after the gate; requires Exercised by 2280 System Processor. The charge pulse applied to all channels is proportional to the DC level at the Test Level Input (0 to + 10 V). Channel-to-channel matching of the constant of propartionality is $< \pm 1\%$. For 0.0 V Test Level Input each channel's test input is a fixed value within the range 0 to 10 pC. Requires a gate width of \geqslant 1 μ sec. For further discussion see Application Note 1. Current outputs proportional to input (0.5 mA/mA). Risetime >25 nsec, 10-90%. The three output buffers on rear panel are factory wired to sum three groups of 16 channels (0-15, 16-31, 32-47). Gate feedthrough is typically 80 mV (into 50 Ω) for 16 channels, recovered in approximately 120 nsec. Maximum output current for any buffer is 90 mA. Requires one Model 2280/82A Processor per CAMAC crate. LeCroy 2282B's are compatible with 2282A's in the same crate. No. 1 RF-shielded CAMAC module conforming to ESONE Report EUR 4100 and IEEE Standard 583. 770 mA at +6 V 160 mA at + 24 V (Plus 1.5 times average input current) 750 mA at - 6 V 0 at -24 V AMP 102550-1 bulkhead-mounting 25-pair connector. Mates with AMP 2-226651-5 cable connector (AMP-latch series). LeCroy Model DK25/50-Length. Includes AMP 2-226298-5 twenty-five signal ribbon coaxial cable with termination by AMP 2-226651-5 connectors at both ends (AMP-latch series), plus one AMP 102550-1 one bulkhead-mounting 25-pair connector. SPECIFICATIONS SUBJECT TO CHANGE